GOMBESSA IV Expedition – Revealing reef shark behaviour as never seen before!

After the success of GOMBESSA II Expedition in 2014 (results published in Current Biology; Mourier et al. 2016) which focused on the role and functioning of grouper spawning aggregations in providing subsidies to maintain an inverted trophic pyramid led by the biggest grey reef shark aggregation, here we come again!!!

The same team (including Laurent Ballesta and colleagues from Andromede Oceanologie) joined by other international researchers (including Yannis Papastamatiou, Charlie Huveneers, Damien Sonny or Eric Parmentier) went back to Fakarava for a new expedition GOMBESSA IV from June to July 2017. This expedition of course will lead to a nice documentary but one of the main aim is to conduct a cutting-edge shark science project! And trust me, all ingredients were involved to produce amazing science and better understand the behaviour of the biggest grey reef shark aggregation in the world!

In June 7th, I arrived in Fakarava with Charlie Huveneers (Flinders University) to help me install an array of Vemco VR2W acoustic receivers in the famous South pass of Fakarava. The idea was to cover the entire channel to better monitor shark movements in the channel. We conducted detection range tests to evaluate at which distance receivers can detect an acoustic tag. Our tests confirmed what I found previously (Mourier et al. 2016) that detection rate clearly dropped from 50 m. So we decided to install receivers 100 m apart. As such, 25 receivers were installed in the pass.

Later, in mid-June, another shark expert Yannis Papastamatiou (Florida International University) joined us to start catching and tagging grey reef sharks. We tested a new capture and tagging technique this year. Indeed, instead of hooking sharks, Laurent and his team was catching sharks underwater, putting them into tonic immobility, attaching a rope around the caudal fin linked to the boat so that we could bring the shark back to us. The shark was then placed into a stretcher alongside the boat to be measured, given a biopsy for isotope analysis and fin clipped for genetic analysis. A transmitter was inserted into its peritoneal cavity and sutured using a surgical stapler. These transmitters not only give the position of the shark within the array of receivers but also important additional data: depth and acceleration! With depth, we will be able to model the 3D movement patterns of sharks in the pass and with accelerometry we will be able to investigate and map activity of sharks and how they monitor energy expenditure especially during hunting phases!

Charlie left us after 2 weeks and Yannis also brought a great gadget to play with: a CatCam which is an animal-borne camera, i.e. a camera we attached to the dorsal fin of a shark and which detached after 2 or 3 days. During the deployment, the logger not only film what the shark see during the day but also record important fine scale behavioural data such as fine accelerometry in the 3 axes. In combination with the acoustic tags, we will better understand how shark hunt and how the manage their energy balance. We succeeded to deploy 5 CatCams and recovered all of them! While some detached earlier than expected, others revealed long-range excursions in open ocean.



ezgif.com-video-to-gif (1)

CATS cam deployed on a grey reef shark showing how it socialises in the shark aggregation

After Yannis left our team on June 1st, I finished the tagging program to reach an impressive total of 38 grey reef sharks which will provide us with great data for a year. At the end of the trip, the team retrieved the receivers to download preliminary data and redeployed them the day after. During a day, I worked on analyzing the data and build a small animation showing all tagged sharks moving simultaneously in the pass (note that I used 32 individuals here because some sharks were tagged at the end of the trip so they did not provide enough data yet).


Of course this year, I also conducted several shark count surveys like in 2014 in which I drifted as fast as possible in the school of sharks to count them and avoid them to come back in frame (i.e. avoiding repeated count of same individuals).

Screen Shot 2017-07-22 at 9.44.41 am

During this expedition, we also used other tools to study sharks. For example, we used the 3 CCTV cameras from the previous expedition to monitor in real-time from our dry office what sharks were doing but also which potential preys are present.

But the year, Damien Sonny (ProFish) brought us a new interesting tool to monitor sharks not only during the day but also at night; a BlueView acoustic camera! It provide images like an echography but have the advantages to provide the same image at night, so ideal to compare the behaviour and activity of sharks and their prey between day and night.

And of course we conducted many night dives in the channel in order to record hours of shark hunting and better understand predator-prey interactions. These drifting dives into >500 sharks were conducted in all hours of the night and will inform us about the periods and locations of maximum hunting activities. Analyzing the slow-motion videos of predation will allow us to identify prey species and in combination with stable isotope analyses will allow us to better understand the trophic position of grey reef sharks in the pass of Fakarava.



Finally, with Eric Parmentier (University of Liege) we will investigate the sound produced by fishes at night and how it influences their probability of being predated.

Sponsors and partners:


There and Back again: PJs are definitely not boring and travel a lot!

Who would have expected that Port-Jackson sharks can travel long distance when seeing these little guys resting in the bottom of New South Wales in Sydney Harbour or Jervis Bay during winter months?


The BEEF lab from Macquarie University led by Prof Culum Brown has been studying these little mysterious creatures, endemic of Aussie waters, for years now and have investigated their long-term movement patterns using acoustic telemetry. Every winter the team went to Jervis Bay where PJs are forming large aggregations and caught sharks to implant them an acoustic transmitter. When the tagged shark passes in proximity of a receiver its identity is recorded allowing to follow them in time and space. The movements of these littles guys can then be tracked along a huge Australian network of receivers.

I was fortunate to participate in this project by analysing the data during my post doc at Culum’s lab last year. And the results are available in a Special Issue of Marine and Freshwater Research.

What the team found was surprising and exciting!!!!

These small benthic sharks not only come to NSW every winter but they were tracked as far as Tasmania, swimming >1,000 km after leaving their mating aggregation in Jervis Bay!

Screen Shot 2016-09-23 at 4.57.15 PMScreen Shot 2016-09-23 at 4.57.42 PM


Moreover, they not only conducted long distances but they also came back every single year to exactly the same reef in Jervis Bay after their > 2,000 km travel (round-trip), becoming an astonishing migrating species with strong site fidelity and philopatry!


In summary, they forage in southern Australia and move to NSW to reproduce in winter, with males arriving earlier than females at the mating aggregation sites.

Screen Shot 2016-09-25 at 7.16.50 PM

All this little sharks are aggregating in great numbers and are socialising for mating. We are now tracking their interactions and investigating their social network. How? Wait for a few more days as we have a paper accepted for publication on this!



The paper can be found at:

Bass N, Mourier J, Day J, Knott N, Guttridge T, Brown C (2017) Long-term migration patterns and bisexual philopatry in a benthic shark speciesMarine and Freshwater Research 68(8): 1414-1421.

Sharks show flexibility in trophic interactions in response to competition

Coral reef ecosystems are increasingly threatened by global changes, especially the shorelines where most of human activities are concentrated. These areas serve as nursery areas for several species of sharks and are important in maintaining populations. But how does competition in these restricted areas influence foraging ecology of sharks?

A study in collaboration between Centre de Recherches Insulaires et Observatoire de Environnement (CRIOBE USR3278, PSL Research University: EPHE – CNRS – UPVD) and Florida International University, published in Marine Environmental Research investigated how sharing nursery areas between species influences trophic interactions in juvenile sharks.

We therefore investigated this question using a long-term monitoring program on juvenile sicklefin lemon sharks (Negaprion acutidens) and blacktip reef sharks (Carcharhinus melanopterus) led by CRIOBE over the past 10 years on Moorea Island (French Polynesia) 1, 2. Moorea represents a useful experimental ground to test the influence of competition in juvenile sharks because this island has numerous nurseries sheltering either only one or both of the two species of sharks. In examining stable isotope values of carbon and azote in juvenile sharks, we demonstrated that sharing a nursery with another species led the species to trophic niche partitioning. While they feed on a similar trophic level when they are alone in a nursery, lemon sharks appear to feed on prey with higher trophic level than blacktip reef sharks when they share the same nursery. This partitioning allows the co-existence of both predator species during the first life stages. This plasticity show the capacity of sharks to adapt to competition and more broadly to their environment.


The paper can be found at :

Matich J, Kiska JJ, Mourier J, Planes S & Heithaus MR (2017) Species co-occurrence affects the trophic interactions of two juvenile reef shark species in tropical lagoon nurseries in Moorea (French Polynesia). Marine Environmental Research 127: 84-91.

Previous papers from juvenile shark monitoring in nurseries of Moorea:
  1. Mourier J, Buray N, Schultz JK, Clua E, Planes S (2013) Genetic network and breeding patterns of a sicklefin lemon shark (Negaprion acutidens) population in the Society Islands, French PolynesiaPLoS ONE8(8): e73899.
  2. Mourier J., Planes S (2013) Direct genetic evidence for reproductive philopatry and associated fine-scale migrations in female blacktip reef sharks (Carcharhinus melanopterus) in French PolynesiaMolecular Ecology22 (1): 201-214.

Smart Sharks Have Robust Social Networks

The role that an individual shark plays within its social network not only serves to maintain cohesion within the population, but it can enhance the network’s resilience to environmental and anthropogenic disturbances. Researchers from Centre de Recherche Insulaire et Observatoire de l’Environnement (CRIOBE USR3278, PSL Research University: EPHE – CNRS – UPVD) recently published a study in the journal Biology Letters that examined the social network of a population of blacktip reef sharks (Carcharhinus melanopterus) in French Polynesia (Figure 1). With support from a researcher at Macquarie University in Australia, the team demonstrated that the interactions between sharks within the social network made the network robust to shark removal. This study also suggested that sharks were able to quickly learn from capture questioning the use of capture-recapture model frameworks for these species.


Figure 1: Blacktip reef sharks networking in the lagoon of Moorea (Photo credit: Lauric Thiault)

In a previous study published in the journal Animal Behaviour (Mourier et al. 2012), the team discovered that blacktip reef sharks could form preferred associations in the wild. ‘Sharks have social networks too! Even though their social structure is not as complex as that of most mammals, sharks can display an affinity for one another’ explains Dr. Johann Mourier, the principal investigator of the study.

To study the social network of sharks, Mourier used the patterns found on the dorsal fins (Figure 2) – which are unique to the individual and can be likened to fingerprints in humans – to identify each individual shark. Such patterns allow researchers to track individuals in space and through time.


Figure 2: The patterns on a shark’s dorsal fin are likened to a human’s fingerprint, and allow researchers to track individual sharks in space and time.

‘Through a global analysis of sharks present together, we were able to build their social network using social science-based methods’, explains Mourier. ‘Capture-release-recapture surveys were simultaneously conducted after each dive to calculate individual probabilities of being captured’.

Investigating the blacktip reef shark’s social network has revealed that not all individuals are equal in terms of maintaining the connectivity between social clusters. Researchers ran simulations, where individual sharks were removed from the network, and what they found was that up to 50% of the population could be removed before the entire network collapsed. In addition to this surprising result, Mourier also noticed that the sharks he had already caught were now nearly impossible to catch as they were avoiding his fishing gear. ‘A shark’s ability to learn from previous negative experiences results in a network that is more robust to removal from fishing.

Finally, results from this study highlight that extreme care must be taken before applying capture-release-recapture models for shark population studies because individual sharks do not have equal probability of being caught.

This original work highlights the complexity of relationships between individuals in the wild and has implications for shark conservation, where it is now imperative that we consider the relative contribution of an individual to the overall resilience of the population.

Mourier, J., Brown, C. and S. Planes. 2017. Learning and robustness to catch-and-release fishing in a shark social network. Biol. Lett. 2017 13 20160824; DOI: 10.1098/rsbl.2016.0824. Published 15 March 2017

Johann MOURIER (Perpignan, France)

When a massive reef shark aggregation relies on delivery

Our work was recently published in the journal Current Biology and even made the cover of the journal.CURBIO_26_15.c1.indd

Mourier J, Maynard J,  Parravicini V, Ballesta L, Clua E, Domeier ML, Planes S (2016) Extreme Inverted Trophic Pyramid of Reef Sharks Supported by Spawning GroupersCurrent Biology 26(15): 2011-2016

It is becoming increasingly difficult to understand what a coral reef ecosystem should look like in areas characterized by low human influence, simply because these areas are becoming increasingly rare. Most of the ocean reefs are facing increasing anthropogenic pressure, especially overfishing and habitat degradation. Therefore, our view of the ocean is often not accurate as we get used to overexploited ecosystems in which the top of the food web has been extirpated. Scientists therefore need to use bait or increase hours of observations to sight any large predator. However, rare healthy reefs still exist and may help us to better understand coral reef ecosystem functioning in health conditions, which is critical to help global conservation management of coral reefs.

In this paper we first quantify the abundance and density of an aggregation of reef sharks in the pass of Fakarava, an atoll of the Tuamotu archipelago in French Polynesia. French Polynesia host healthy populations of sharks as they have never been targeted by local human population and have been protected by law under fishing bans since 2006 within which is one of the largest worldwide shark sanctuary! Our work allowed to estimate the population size of this aggregation to reach up to 900 reef sharks (700 grey reef sharks) in a tiny and narrow channel (density 2-3 times what have been found in other health reefs), making for the moment the largest aggregation of reef sharks ever documented.


Figure above: Up to 700 grey reef sharks live in the pass of Fakarava, a narrow channel in French Polynesia

We therefore questioned how such a high biomass of predator can survive in such a restricted area.

One of the first question was to determine if there were enough fish in the pass to feed such a number of sharks… and the response was obviously NO!

The second question was therefore to understand if these sharks are resident or if it happens that they feed outside the pass. Using acoustic telemetry, we found that sharks were more present and abundant during the winter months while they were roaming in and out of the pass during summer. So how during these winter months this massive number of sharks can be supplied if they don’t search for food outside the pass?

During June and July, camouflage groupers form dense spawning aggregations in the pass as well as less other fish species. Although relatively ephemeral, these spawning aggregations represent a large amount of biomass into the pass. Indeed, this grouper aggregation accounted for more than 17,000 fishes representing about 30 tonnes of potential food, freely brought to the sharks. Sharks use these inputs as trophic subsidies and do not need to conduct costly foraging excursion outside the pass.

Screen Shot 2016-08-15 at 12.12.34 PM

Figure above: Fish spawning aggregations represent important subsidies for sharks.

While they are generally resting in the strong current during the day, our underwater nocturnal observations showed that they were actively hunting in the pass at night, targeting at least 14 species of fish including groupers.


Figure above: Sharks are hunting at night on spawning grouper as well as up to 13 other fish species.

Screen Shot 2016-08-15 at 12.11.52 PM

Figure above: Nocturnal hunting of grey reef sharks in Fakarava

Generally, typical ecosystem should be represented as a classic pyramid with broad base of primary producer and decreasing biomass as higher trophic levels are being reached. Biological energy flow is lost when predator consume their prey and therefore there is a requirement for more prey than predators. In the pass of Fakarava, the huge abundance of resident reef sharks and lower relative abundance of prey makes the trophic pyramid inverted; a paradox in which predators outnumber their prey which is not supported by the physical laws of thermodynamics.

Our research provides an empiric example demonstrating that inverted trophic pyramids, where predators outnumber their prey, is only possible at local scales if predators find a way of optimizing the exploitation of both spatial and temporal subsidies.


Figure above: Sharks exploit both spatial (in summer) and temporal (in winter) subsidies.

Finally, our study revealed important considerations for coral reef conservation. Indeed, protection of vulnerable spawning aggregation is important, not only for the fish themselves but also for predators that depend on them for trophic subsidies.

You can also watch our Video Abstract to better understand our findings.

you can also watch our documentary “The Grouper Mystery” that was produced during our scientific project.

Read also Colin Simpfendorfer and Michelle Heupel dispatch related to our study here.

Increase in sea temperature can affect development of coloration in a benthic shark

Here are some interesting but bad news findings about the impact of climate change on the development of young sharks from an experiment conducted by Connor Gervais at the Rummer Lab:

“Small benthic shark may not develop their coloration patterns under predicted end-of-centery temperature (32°C)”

Epaulette sharks (Hemiscyllium ocellatum) are small (70–90 cm), oviparous long-tailed carpet sharks commonly found on reef flats from Papua New Guinea to Australia. Sharks reared at annual summer average temperatures (~28 °C; 24.114° S, 152.717° E) develop distinct colouration and patterning in ovo (n=16). Upon hatching (n = 11), their namesake epaulettes are clearly defined (Fig. 1a). But sharks hatching from eggs reared at predicted end-of-century temperatures (32 °C) displayed irregular colouration and patterning (Fig. 1b). All except for one 32 °C hatchling died after 3 days, and none had developed the distinct epaulette observed in control sharks. The surviving hatchling was maintained
at 32 °C for 30 days post-hatch and then slowly transitioned to control temperatures (28 °C). Even after 120 days post-hatch, the neonate’s patterns were still not properly developed (Fig. 1d).


The left panels are current day temperatures, and the right panels are sharks that developed under temperatures predicted to occur on the Great Barrier Reef Marine Park by 2100.

These patterns are important for the ecology and survival of these small benthic sharks. Inded it can further affect their camouflage ability to hide from predators or alternatively impact their social behaviour. Further research is needed but this is certainly a bad news for this species for which it was found good abilities to deal with increasing CO2 (see published paper here).


Gervais C, Mourier J, Rummer J (in press) Developing in warm water: Irregular colouration and patterns of a neonate elasmobranch. Marine Biodiversity. Link to PDF


Sharks have increadible healing abilities

Following a nice collaboration with Andrew Chin and Jodie Rummer from James Cook University (Australia), we recently published an article documenting a range of diverse wounds and injuries on the blacktip reef shark (Carcharhinus melanopterus) and demonstrating how quickly sharks were able to heal and recover from these injuries. This healing ability has different implications and application to understanding of shark’s ecology.

We first documented the rapid healing of this species following an internal tagging procedure involving a small incision in the belly of the shark to implant the transmitter. This not only shows that sharks are healing quickly but also that they are robust to this tagging procedure which is important to know as a scientist when you work with free-living animal.




The same kinds of incisions/open-wounds are present in neonate sharks from viviparous species such as the blacktip reef shark. Just after birth, an open umbilical scar is visible but it quickly close and heals. It is then important to assess the speed of healing in ecology as it can inform the approximate date of birth when the juvenile is caught in its nursery. Small umbilical wounds in neonates decreased in surface area by 71% in less than a week and were barely detectable after 24 days.




The same rate of healing is helpful when females are bitten by males during mating. Indeed, as it is really rare to observe shark copulation, we can indirectly infer when mating occurred using the fresh bite wounds on female’s body. Inferring the speed of healing of these wounds can therefore tell us exactly when mating occurred.




Blacktip reef sharks can also have other sources of injuries. For example, larger sharks or other conspecifics can bite them during agonistic/dominance behaviour or predation attempt by larger predators, and healing quickly is therefore important.




Anthropogenic activities can injure sharks (e.g. boat propellers). We report here an unbelievable healing case of a shark surviving a serious deep wound that might have been inflicted by a boat propeller in Moorea lagoon. I less than a month the wound closed completely.


Fig.4 copie


Finally, we reported two cases of survival after fin removal due to targeted shark-finning in which the basal wound of fin removal healed well and the sharks were observed alive a while after injury, swimming without their dorsal fin. However, even if they survive for un unknown time, the removal of the dorsal fin may greatly affect their daily life and in turn their fitness (and most of finned sharks may not survive).




In summary, this study suggests that elasmobranchs may be resilient to injuries, showing rapid healing from minor wounds and long-term survival from even major mechanical injuries. These are positive findings for elasmobranch conservation, especially considering that up to a quarter of all shark and ray species worldwide are threatened with extinction. Despite this incredible ability, we encourage minimal handling time and stress when releasing sharks after fishing or by-catch, which could include cutting a line near the hook instead of repeatedly attempting to remove the hook. Anglers should also be made aware that sharks can recover from mechanical injury; therefore, sharks should be released even if the animal sustains injuries during the capture process.


The paper is Open Access and available at:

Chin A, Mourier J, Rummer J (2015) Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury. Conservation Physiology 3(1): cov062

What is known about effects of provisoning on sharks and ray and how future research should investigate different scales?

We recently published a paper that review the research that has been conducted so far on the effect of shark and ray provisioning on the animal’s ecology, behaviour and health.

Shark and ray provisioning is a rapidely growing indstry that offers tourist with an increased probability of interaction with elusive animals buy attracting them with food or even feeding them to habituate them to visit the diving site. This activity is widespread around the world and involve different species.

CSeQJbfW4AAaYef.png large

We reviewed the 22 available studies on this topic involving 14 shark and 3 ray species targeted by artificial provisioning to investigate their behavioral, physiological, and ecological response.

We first report similar individual response by sharks and rays, including change in horizontal movements or emergence of an anticipatory response. However, all studies demonstrate that the propensity to respond to provisioning operations varies both among elasmobranch species and among individuals within each species. The effect on diet and foraging behaviour is yet to be better investigated as this topic has been understudied so far; the 2 availaible studies showing contrasting patterns that might be due by different provisioning practices.

We also investigated the potential effects at the group scale. We report a number of studies showing an aggregation effect with an increased abundance of the targeted species at the feeding site. Provisioning operations can influence group composition in terms of species and genders that are aggregated. It can aggregate naturally gregarious species but also solitary species creating an artificial interacting zone. However, most studies indicate that there is unlikely an effect on the natural cycle of the species involved, as for example, most species appear to keep conducting their breeding migrations despite the possibility to stay at the provisioning site. On the other hand, aggregation at a specific site can promote intra-specific aggression or competition.

We also reported the community-scale effects, including the effects of distribution of predators and prey or chnaging elasmobranch communities at the feeding site.

Although the effect on elasmobranch health has been yet underinvestigated, we discuss the potential effects that may impact animal’s health and body condition.

While a growing number of ecologists is investigating the potential effects of provisioning on sharks and rays, we took the opportunity to suggest a framework that take into account multi-scales when studying this topic. Until now, most of the studies have only been context dependent and focused on only one or two effects (e.g., effects on abundance or on movement patterns), but we highlight teh fact that scientists should now intergrate multiple effects and their interactions within their study. Indeed, most individual, group and community effects are not isolated and actively interact. A broader framework could therefore study the cascading affects accross the scales.

CSd7ztgWEAARI67.png large

Such a framework could benefit our understanding of the real effects and their strenght and importance on shark and rays health and behaviour.


While the review was based on the potential effects of provisioning on sharks and rays, we also show that it is context dependent and not necessarily negative. This activity can have positive effect for conservation and awareness, or even null effects on some aspects. The strenght of negative effects is often related to the practices of the industry. If some operations are already conscious on the benefit of good practices to secure the durability of their activity and the health of populations of the species they target (http://globalsharkdiving.org/ , http://sustainablesharkdiving.com/), others only think about short-term financial benefit of the practice and do not adapt their practices to good code of conduct which is likely to negatively impact the industry.

Note also that the reported negative effects are nothing compared to other threats that sharks are facing every day (e.g. overfishing, habitat degradation, climate change…).

We hope our review will provide a good summary of the different effects that have already been studied in sharks and rays but also that it will encourage future researcher to use a broader framework to investigate the response of these marine animals to provisioning.

Our study is available here:

Brena PF, Mourier J, Planes S, Clua E (2015) Shark and ray provisioning : functional insights into behavioral, ecological and physiological responses across multiple scales. Marine Ecology Progress Series 538: 273-283.PDF icon

Which fish can you find in Marquesas Islands? Here is an updated checklist showing 13.7% of endemism!


Expedition Pakaihi I Te Moana was conducted in 2011 to the Marquesas Islands, lying between 07°50ʹ S and 10°35ʹ S latitude and 138°25ʹ W and 140°50ʹ W longitude. The team made a long trip at sea on ship Braveheart and visited almost all islands of the Marquesas, including a sandbank and some seamonts.


The expedition combined extensive collections and visual censuses of the shore fish fauna.

A total of 74 species are added as new records for the Marquesas Islands; the coastal fish fauna of the Marquesas Islands is increased from 415 to 495 species and the number of endemic species is increased from 48 to 68 species.

This increases the percentage of species-level endemism for the Marquesas Islands to 13.7%, ranking as the third highest region of endemism for coral reef fishes in the Indo-Pacific. Only two other peripheral regions, the Hawai’ian Islands and Easter Island, have higher values.

CQay2lAWcAA47Hb.png large

The list also includes elasmobranchs (sharks and rays) including teh 2 species of Manta rays previously described in this paper Mourier 2012.

vyvyi copie

The paper is open access:

Delrieu-Trottin E, Williams JT, Bacchet P, Kulbicki M, Mourier J, Galzin R, Lison de Loma T, Mou-Tham G, Siu G, Planes S (2015) Shore fishes of the Marquesas Islands, an updated checklist with new records and new percentage of endemic species. CheckList 11(5): 1758 PDF icon